Roots of Equations - Fixed Point Method

M311 - Chapter 2

September 9, 2008

Lesson Outline

(1) Fixed Point Method

Fixed Point Iteration
(2) Rate of Convergence

Fixed Point Iteration

Fixed Point Iteration

If the equation, $f(x)=0$ is rearranged in the form

$$
x=g(x)
$$

then an iterative method may be written as

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right) \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where n is the number of iterative steps and x_{0} is the initial guess. This method is called the Fixed Point Iteration or Successive Substitution Method.

Definition of Fixed Point

If $c=g(c)$, the we say c is a fixed point for the function $g(x)$.

Theorem

Fixed Point Theorem (FPT)

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all x in $[a, b]$. Suppose, in addition, that $g^{\prime}(x)$ exists on (a, b). Assume that a constant K exists with

$$
\left|g^{\prime}(x)\right| \leq K<1, \text { for all } x \text { in }(a, b)
$$

Assume that c in (a, b) is a fixed point for g. Then if x_{0} is any point in (a, b), the sequence

$$
x_{n+1}=g\left(x_{n}\right) \quad n=0,1,2, \ldots
$$

converges to the unique fixed point c.(Proof - B\& F page 59)

Example: Given $f(x)=x^{3}-7 x+2=0$ in $[0,1]$.
Find a sequence that $\left\{x_{n}\right\}$ that converges to the root of $f(x)=0$ in $[0,1]$.
Answer: Rewrite $f(x)=0$ as $x=\frac{1}{7}\left(x^{3}+2\right)$. Then $g(x)=\frac{1}{7}\left(x^{3}+2\right)$ and $g^{\prime}(x)=\frac{3 x^{2}}{7}<\frac{3}{7}$ for all $x \in[0,1]$. Hence, by the FPT the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}=\frac{1}{7}\left(x^{3}+2\right)
$$

converges to a root of $x^{3}-7 x+2=0$

Example: Solve $f(x)=x^{3}-x-1=0$ on (1,2).
Answer: Note $f(-1)=-1$ and $f(2)=5, \therefore$ by the IVT a root exists on $(1,2)$. Set $g(x)=(1+x)^{\frac{1}{3}}$. Note that $g^{\prime}(x)=\frac{1}{3}(1+x)^{-2 / 3}$. So, on $(1,2)$ we have

$$
\begin{gathered}
\frac{1}{3(1+2)^{2 / 3}}<g^{\prime}(x)<\frac{1}{3(1+1)^{2 / 3}} \\
\therefore 0<g^{\prime}(x)<\frac{1}{3\left(2^{2 / 3}\right)}=K
\end{gathered}
$$

and $\left|g^{\prime}(x)\right| \leq K<1$ on $(1,2)$. By the FPT the sequence

$$
x_{n+1}=\left(1+x_{n}\right)^{\frac{1}{3}}
$$

will converge to a fixed point on $(1,2)$.

$$
\begin{aligned}
x_{n+1} & =\left(1+x_{n}\right)^{\frac{1}{3}}, \quad x_{0}=1.3 \\
x_{0} & =1.3 \\
x_{1} & =1.320006122 \\
x_{2} & =1.323822354 \\
x_{3} & =1.324547818 \\
x_{4} & =1.324685639 \\
\vdots & \vdots \\
x_{11} & =1.324717957 \\
x_{12} & =1.324717957 \\
x_{13} & =1.324717957
\end{aligned}
$$

Example 2 \& 3 of B \& F. (Page 57-58)

Definition

Suppose that $\left\{x_{n}\right\}$ is a sequence of numbers generated by an algorithm, and the limit of the sequence is s. If

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-s\right|}{\left|x_{n}-s\right|^{p}}=K \quad, K \neq 0
$$

for some positive constants K and p, the we say that the sequence $\left\{x_{n}\right\}$ converges to s with p being the order of convergence.

If $p=1$, convergence is linear.
If $p=2$, convergence is quadratic.
Larger values of p imply faster rates of convergence.

