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Abstract. Let X1, . . . , Xn be i.i.d. integral valued random variables and Sn their sum. In the case when X1

has a moderately large tail of distribution, Deshouillers, Freiman and Yudin gave a uniform upper bound for
maxk∈Z Pr{Sn = k} (which can be expressed in term of the Lévy Doeblin concentration of Sn), under the extra
condition that X1 is not essentially supported by an arithmetic progression. The first aim of the paper is to show that
this extra condition cannot be simply ruled out. Secondly, it is shown that if X1 has a very large tail (larger than a
Cauchy-type distribution), then the extra arithmetic condition is not sufficient to guarantee a uniform upper bound
for the decay of the concentration of the sum Sn . Proofs are constructive and enhance the connection between
additive number theory and probability theory.
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1. Introduction

In order to get a measure of the dispersion (or the concentration) of real random variables,
even when it is not integrable, P. Lévy introduced the notion of concentration:

Q(X, λ) = sup
t

P{t ≤ X ≤ t + λ}.

It is quite natural to expect that the concentration of the sum Sn of n independent identically
distributed (i.i.d.) random variables with the same law as X will decrease as n is increasing
and tend to zero as n goes to infinity, as soon as X is not almost surely constant. This was
indeed proved by P. Lévy. The monograph [4] by W. Hengartner and R. Theodorescu gives
many explicit results of this type, due mainly to Doeblin, Lévy, Kolmogorov, Rogozin,
Esseen, Kesten. One of the features of these delicate upper bounds, is that, on the n aspect,
the rate of decay of the concentration of Sn is majorized by n−1/2.
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However, if one considers independent random variables following a Cauchy law, one
readily sees that in this case, the rate of decay of the concentration of Sn has the speed n−1.
The only result in [4] connecting the concentration of Sn with a rate of decay quicker than
n−1/2 is a lower bound due to Esseen (cf. Theorem 2.3.2, p.74), a corollary of which is
quoted below as Lemma 1.

The question of the upper bound has recently attracted the attention of a few authors.
J-M. Deshouillers, G.A. Freiman and A.A. Yudin [1] revived the subject by showing how
one could get such results by combining Bochner theorem on the positivity of the Fourier
transform of a positive measure, additive number theory and classical Fourier techniques.
One of their results is the following.

Theorem 1 (Deshouillers, Freiman, Yudin). Let log 4
log 3 < σ < 2; let ε > 0, A ≥ 1, a > 0

and let X1, . . . , Xk, . . . be i.i.d. integral valued random variables such that:

∀L ≥ A : 1 − Q(X1, L) ≥ aL−σ . (1)

max
q≥2

max
s mod q

P{X1 ≡ s mod q} ≤ 1 − ε. (2)

Then we have for n ≥ 1

Q(X1 + · · · + Xn, 1/2) ≤ cn−1/σ , (3)

where c is a constant that depends on σ , ε, A and a at most.

Subsequently, A.S. Fainleib [3] considered the case when the random variables are not
necessarily integral valued and the right hand side of (1) is of a more general type. His
Corollary 1 is read as follows.

Theorem 2 (A.S. Fainleib). Let H be an increasing continous fuction on [0, ∞) such that
H (0) = 0 and

H (4u) ≤ 3H (u) (4)

for u sufficiently small. Let G be its inverse function and let X1, . . . , Xk, . . . be i.i.d. real
valued random variables such that

∀L ≥ A : 1 − Q(X1, L) ≥ G(L−1). (5)

Then we have for n ≥ 1

Q(X1 + · · · + Xn, 1/2) ≤ cH (n−1), (6)

where c is a constant that depends on H , A and the law of X1 at most.

The comment that follows the statement of Corollary 1 in [3], which is, up to a necessary
change in notation “Deshouillers et al. considered the last statement for the particular case in
which Xi are integral valued and satisfy a certain arithmetical condition and H (x) = bxβ/2,
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b > 0, 1 < β < log2 3”, seems to miss one point that was addressed to in Theorem 1: on
which property of X1 does the constant in (6) depend ? The answer given by the authors of
[1] was that, in the case when X1 has a moderately large tail of distribution (Condition (1)
or (5)), a sufficient condition is that X1 should not be concentrated in arithmetic progres-
sions. Although condition (2) is obviously not necessary stricto sensu, the constructions we
perform in this paper strengthen our belief that some arithmetic property in the style of (2)
is necessary for a uniform upper bound as (3) to hold.

Our first aim in this paper is to show that, in the uniform phrasing of Theorem 1, the
condition (2) cannot be simply ruled out.

Theorem 3 . Let 0 < σ < 2. There exists a family of i.i.d. real valued random variables
X (n)

1 , . . . , X (n)
n , (n = 1, 2, . . .), satisfying

∀L ≥ 2 : 1 − Q
(
X (n)

1 , L
) ≥ 1

10
L−σ , (7)

and

n1/σ Q
(
X (n)

1 + · · · + X (n)
n , 1/2

)
(8)

tends to infinity with n.

Although we shall construct the random variables X (n)
k with integral values, it is clear

that a little smoothing permits to show that one may request that the the random variables
satisfying Theorem 3 are continuous and their support is actually R.

The authors of [1] suggest that further progress in the inverse additive theory on the torus,
in the spirit of the work [5] of V. Lev would permit to extend the range of σ in Theorem 1
to the interval [1, 2]. Our second aim is to show that 1 is a natural bound for Theorem 1, by
showing the following

Theorem 4. Let 0 < σ < 1. There exists a family of i.i.d. integral valued random variables
X (n)

1 , . . . , X (n)
n , (n = 1, 2, . . .), satisfying

∀L ≥ 2 : 1 − Q
(
X (n)

1 , L
) ≥ 1

10
L−σ , (9)

max
q≥2

max
s mod q

P{X1 ≡ s mod q} = 1

2
(10)

and

n1/σ Q
(
X (n)

1 + · · · + X (n)
n , 1/2

)
(11)

tends to infinity with n.
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2. Proof of Theorem 3

2.1.

The starting point of our construction is a probability measure µ(1) with a tail µ(1)(R\]-L,L[)
of the order L−σ . For 0 < σ < 2, we define the probability measure µ(1) by the relations

µ(1)(0) = µ(1)(−1) = µ(1)(1) = 1/5 (12)

and, for k ≥ 2

µ(1)(k) = µ(1)(−k) = w(k, σ ) = 1

5

∫ k

k−1
σ x−1−σ dx = 1

5

(
1

(k − 1)σ
− 1

kσ

)
. (13)

It is easily seen that µ(1) is a probability measure and satisfies

∀L ≥ 1 : µ(1)([−L , L]) ≤ 1 − 2

5
L−σ (14)

We shall now construct the probability measure µ(n) by pushing some masses of µ(1)

apart from 0, so that we only increase the size of its tail, and (14) will still be satisfied by
µ(n). In order to benefit from this construction also in the proof of Theorem 4, we introduce
further parameters δ, r and τ (which can be explicitly chosen in term of σ ) such that

0 < σ < r < δ ≤ 2, (15)

τ is a positive integer and

στ ≥ 2 and δστ/(δ − σ ) > 1 + 1/r. (16)

As the Referee has pointed out, one may take the value δ = 2 for the proof of Theorems 3
and 4. For a forthcoming use of this construction, we keep the possibility for δ to be chosen
as close to σ as possible.

We further let K1 = 1 and define Kn for n ≥ 2 by

Kn = ⌊
nτσ/(δ−σ )

⌋
. (17)

For n ≥ 2 we define the probability measure µ(n) in the following way

µ(n)(0) = µ(n)(−nτ ) = µ(n)(nτ ) = 1

5
; (18)

for 2 ≤ k ≤ Kn , we let

µ(n)(knτ ) = µ(n)(−knτ ) = w(k, δ) = 1

5

∫ k

k−1
δx−1−δdx ; (19)
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µ(n)(nτ (1 + Kn)) = µ(n)(−nτ (1 + Kn)) = 1

5

(
1

K δ
n

− 1

(nτ (1 + Kn))σ

)
; (20)

for l > nτ (1 + Kn), we let

µ(n)(−l) = µ(n)(l) = w(l, σ ) = 1

5

∫ l

l−1
σ x−1−σ dx, (21)

and for those l’s in [−nτ (1+Kn), nτ (1+Kn)] which are not multiple of nτ , we let µ(n)(l) = 0.
Since, by the definition (17) of Kn we have Kn ≥ 1, the measure µ(n) is well

defined. Let us verify that it is a probability measure. We first show that it is a posi-
tive measure, which amounts to checking that the RHS of (20) is non-negative: we have
indeed

Kn ≤ nτσ/(δ−σ ),

whence

Kn
δ ≤ nτσδ/(δ−σ ) ≤ nτσ .nτσ 2/(δ−σ ) < (nτ (1 + Kn))σ .

The second point to check is that the total mass is 1; we have

µ(n)(R) = 3

5
+ 2

5

∫ Kn

1
δx−1−δdx + 2

5

(
1

K δ
n

− 1

(nτ (1 + Kn))σ

)

+ 2

5

∫ ∞

nτ (1+Kn )
σ x−1−σ dx,

which is readily seen to be equal to 1.

2.2.

For n = 1, 2, . . ., let X (n)
1 , . . . , X (n)

n , be independent random variables, the common law of
which is µ(n). We prove here that they satisfy (7). Let L ≥ 1 and I be a closed interval with
length L .

If I does not contain 0, or if L ≤ 2, we have

P
{

X (n)
1 ∈ I

} ≤ 4

5
≤ 1 − 1

5
L−σ .

If I contains 0 and L > 2, we let I = [a, b] and we can assume that 0 ≤ |a| ≤ b ≤ L ,
since the distribution of X (n)

1 is even.
We shall use P{X (n)

1 ∈ I } ≤ P{X (n)
1 ∈ [−b, b]} and consider 3 cases according to the

size of b.
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1. If b ≥ nτ (1 + Kn), we have

P
{

X (n)
1 /∈ [−b, b]

} = 1 − µ(1)([−b, b])

sinceµ(1) andµ(n) respectively give the same masses to points which are outside [−nτ (1+
Kn), nτ (1 + Kn)]. We thus have

P
{

X (n)
1 ∈ [−b, b]

} = P
{

X (1)
1 ∈ [−b, b]

}

= 3

5
+ 2

∑

2≤k≤[b]

µ(1)(k)

≤ 3

5
+ 2

5

∫ [b]

1
σ x−1−σ dx

≤ 1 − 1

10
L−σ .

2. If b < 2nτ , we have

P
{

X (n)
1 ∈ [−b, b]

} ≤ 3

5
≤ 1 − 1

10
L−σ .

3. If 2nτ ≤ b < nτ (1 + Kn), we have

P
{

X (n)
1 ∈ [−b, b]

} ≤ 3

5
+ 2

∑

2≤k≤[b/nτ ]

w(k, δ)

= 1 − 2

5

([
b

nτ

])−δ

.

Since b/nτ < 1 + Kn ≤ 2nτσ/(δ−σ ), we have

(b/nτ )(δ−σ ) ≤ 2(δ−σ )nτσ ≤ 4nτσ ,

whence

(b/nτ )δ ≤ 4nτσ (b/nτ )σ ≤ 4bσ ≤ 4Lσ

from which we get

P
{

X (n)
1 ∈ [−b, b]

} ≤ 1 − 1

10
L−σ .

This proves (7).

2.3.

We now prove Relation (8). In order to show that the concentration of the sum of the X (n)
k is

large, we’ll make use of the following result, which is a direct corollary of a result of C.G.
Esseen (cf. [2] or [4])
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Lemma 1. Let 0 < r < 2 and let Y1, . . . , Yn be i.i.d. random variables. We have

Q(Y1 + · · · + Yn, 1/2) ≥ r

48
min(2, (nE(|Y1|r ))−1/r ). (22)

Let ϕn be the normalized characteristic function of X (n)
1 , i.e. E(exp(2π i t X (n)

1 )) . Letting
ph = P{X (n)

1 = h} and e(u) = exp(2π iu), we can write

ϕn(t) =
∑

|l|≤Kn

plnτ e(lnτ t) +
∑

|l|>nτ Kn

ple(lt) = ψn(t) + Rn(t). (23)

When n is large enough, we have

|Rn(t)| ≤ 2

5
K −δ

n = 2

5

[
nτσ/(δ−σ )

]−δ ≤ n−δτσ/(δ−σ );

since max(|ψn(t)|, |ϕn(t)|) ≤ 1, we have

∣∣ϕn
n (t) − ψn

n (t)
∣∣ ≤ n|Rn(t)| ≤ n1−δτσ/(δ−σ ). (24)

Let us define

ql =





1

1 − Rn(0)
plnτ for |l| ≤ Kn

0 for |l| > Kn

.

Since
∑

|l|≤Kn
ql = 1, we can define a family of i.i.d. random variable Z (n)

1 , . . . , Z (n)
n such

that P{Z (n)
1 = l} = ql for any l in Z. Their normalized characteristic functions ψ̃n satisfy

ψ̃n(t) =
∑

|l|≤Kn

qle(lt) = 1

1 − Rn(0)
ψn

(
t

nτ

)
.

By (24) and a similar inequality connecting ψ̃n
n

and ψn
n , we have

∣
∣ϕn

n (t) − ψ̃n
n
(nτ t)

∣
∣ ≤ 2n1−δτσ/(δ−σ ).

By integrating over [0, 1], we get

∣∣
∣∣∣

∫ 1

0
ϕn

n (t) dt −
∫ 1

0
ψ̃n

n
(nτ t) dt

∣∣∣
∣∣
≤ 2n1−δτσ/(δ−σ );

we change the variable in the second integral and use the 1-periodicity of ψ̃n; we thus obtain

∣∣∣∣∣

∫ 1

0
ϕn

n (t) dt −
∫ 1

0
ψ̃n

n
(t) dt

∣∣∣∣
∣
≤ 2n1−δτσ/(δ−σ ),
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which is also

∣∣P
{

X (n)
1 + · · · + X (n)

n = 0
} − P

{
Z (n)

1 + · · · + Z (n)
n = 0

}∣∣ ≤ 2n1−δτσ/(δ−σ ), (25)

By the remark at the top of p.10 of [4], (25) is equivalent to

∣∣Q
(
X (n)

1 + · · · + X (n)
n , 1/2

) − Q
(
Z (n)

1 + · · · + Z (n)
n , 1/2

)∣∣ ≤ 2n1−δτσ/(δ−σ ). (26)

We recall that r ∈]σ, δ[ ; thus

E
(|Z (n)|r) = (1 − Rn(0))−1

(
2

5
+ 2

5

∑

2≤l≤Kn

lr

(
1

(l − 1)δ
− 1

lδ

))

,

tends to a constant C1 as n tends to infinity. By Esseen’s Lemma 1, there exists a constant
C2 such that for all n we have

Q
(
Z (n)

1 + · · · + Z (n)
n , 1/2

) ≥ C2n−1/r . (27)

Relation (8) then comes from (27) and (26), thanks to (16). Theorem 3 is thus proved.

3. Proof of Theorem 4

In this section, we assume 0 < σ < 1 and let the parameters δ, r and τ satisfy Condition
(16) as well as the condition

0 < σ <
2σ

2 − σ
< r < δ ≤ 2, (28)

which is stronger than (15).
Let the i.i.d. random variables Y (n)

1 , . . . , Y (n)
n satisfy

P
{
Y (n)

1 = k
} = 1

2
P

{
X (n)

1 = k
} + 1

2
P

{
X (n)

1 = k − 1
}
. (29)

Let L ≥ 2 be given and let I be a closed interval of length L such that Q(Y (n)
1 , L) =

P{Y (n)
1 ∈ I }. We have

Q
(
Y (n)

1 , L
) = 1

2
P

{
X (n)

1 ∈ I
} + 1

2
P

{
X (n)

1 ∈ 1 + I
}

≤ 1

2
Q

(
X (n)

1 , L
) + 1

2
Q

(
X (n)

1 , L
) ≤ Q

(
X (n)

1 , L
)
, (30)

so that (9) comes from (1).
Let q ≥ 2; for any s we have

P
{
Y (n)

1 ≡ s mod q
} = 1

2
P

{
X (n)

1 ≡ s mod q
} + 1

2
P

{
X (n)

1 ≡ s − 1 mod q
}

(31)
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since the sets P{X (n)
1 ≡ s mod q} and P{X (n)

1 ≡ s − 1 mod q} are disjoint, we have

P
{
Y (n)

1 ≡ s mod q
} ≤ 1

2
,

and equality is clearly obtained when q = 2 ; whence (10).
We finally turn our attention to the concentration of Y (n)

1 +· · ·+ Y (n)
n . For any k, we have

P
{
Y (n)

1 + · · · + Y (n)
n = k

} = 1

2n

∑

(ε1,...,εn )∈{0,1}n

P

{

X (n)
1 + · · · + X (n)

n = k −
n∑

i=1

εi

}

. (32)

One way to prove this relation is to introduce a family of i.i.d. random variables U (n)
j

with values in Z × {0, 1} such that

P
{
U (n)

1 = (�, i)
} = 1

2
P

{
X (n)

1 = �
}

for i = 0, 1,

and consider Y (n)
j to be the sum of the components of U (n)

j ( j = 1, . . . , n).
Let us consider (32) with k = [n/2] ; we get

P
{
Y (n)

1 + · · · + Y (n)
n = [n/2]

} ≥ 1

2n

∑

(ε1,...,εn )∈{0,1}n

ε1+···+εn=[n/2]

P
{

X (n)
1 + · · · + X (n)

n = 0
}

≥
(

n

[n/2]

)
1

2n
P

{
X (n)

1 + · · · + X (n)
n = 0

}
.

It is clear from 2.3 that there exists a constant K3 such that

P
{

X (n)
1 + · · · + X (n)

n = 0
} ≥ K3n−1/r for n ≥ 1

and Stirling’s formula (even some weak form of it) then implies

Q

(
Y (n)

1 + · · · + Y (n)
n ,

1

2

)
≥ K4n−1/r−1/2;

since we chose r > 2σ/(2 − σ ), the exponent −1/r − 1/2 is larger than −1/σ , whence we
deduce the fact that n1/σ Q(Y (n)

1 + · · · + Y (n)
n , 1

2 ) tends to infinity with n.
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